

Daytime Radiative Cooling Using Glass Slides

March 2017 Research Highlight

- (a) Radiative cooler under test
- (b) Temperature measurement results of the ambient air and cooler

Work was performed at Caltech and Stanford.

Scientific Achievement

We achieved daytime radiative cooling of 8 degrees below ambient temperature under direct sunlight using a simple 1D stack made of PDMS, glass, and a silver back reflector.

Significance and Impact

Inexpensive, abundant materials can be used for applications such as dry cooling for power plants and buildings, significantly reducing energy consumption.

Research Details

The cooler is fabricated by coating a polymer film on the front side as a near-perfect emitter in the infrared (4.5 to 25 μ m) with emissivity of ~ 95% and a silver film on the back side as a good solar reflector (0.3 to 2 μ m) with reflectivity of ~ 97%.

Jun-long Kou, Zoila Jurado, Zhen Chen, Shanhui Fan, and Austin J. Minnich, *ACS Photonics* **ASAP** (2017) DOI: 10.1021/acsphotonics.6b00991

